3597 independent reflections

 $R_{\rm int} = 0.017$

3158 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[1-(4-Chloro-2-fluorophenylsulfonyl)piperidin-4-yl]diphenylmethanol

S. B. Benakaprasad,^a S. Naveen,^b M. A. Sridhar,^b J. Shashidhara Prasad^b and K. S. Rangappa^a*

^aDepartment of Studies in Chemistry, Mansagangotri, University of Mysore, Mysore 570 006, India, and ^bDepartment of Studies in Physics, Mansagangotri, University of Mysore, Mysore 570 006, India

Correspondence e-mail: rangappaks@chemistry.uni-mysore.ac.in

Received 25 July 2007; accepted 29 July 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.047; wR factor = 0.152; data-to-parameter ratio = 12.8.

In the title compound, $C_{24}H_{23}CIFNO_3S$, the piperidine ring is in a chair conformation. The geometry around the S atom is distorted tetrahedral. The dihedral angle between the leastsquares plane, *P*1, defined by four C atoms of the piperidine ring, and the dihalo-substituted benzene ring is 49.80 (1)°. The dihedral angles between *P*1 and the two phenyl rings are 59.34 (1) and 73.81 (1)°. The two phenyl rings make a dihedral angle of 65.13 (14)°. The structure exhibits intermolecular hydrogen bonds of the types $O-H\cdots O$ and $C-H\cdots O$.

Related literature

For related literature, see: Cremer & Pople (1975); Henderson *et al.* (1996); Li *et al.* (2006); Mao *et al.* (1998); Sugimoto *et al.* (1990).

Experimental

Crystal data $C_{24}H_{23}CIFNO_3S$ $M_r = 459.94$ Monoclinic, P_{2_1}/c a = 10.238 (7) Å b = 11.295 (4) Å c = 21.072 (12) Å $\beta = 115.481$ (2)°

$V = 2200 (2) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.30 \text{ mm}^{-1}$
T = 295 (2) K
$0.25 \times 0.20 \times 0.20$ mm

Data collection

MacScience DIPLabo 32001 diffractometer Absorption correction: none 6513 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ 281 parameters $wR(F^2) = 0.152$ H-atom parameters constrainedS = 1.14 $\Delta \rho_{max} = 0.56$ e Å $^{-3}$ 3597 reflections $\Delta \rho_{min} = -0.43$ e Å $^{-3}$

Table 1	
Hydrogen-bond geometry (Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
019-H19···08 ⁱ	0.82	2.13	2.873 (3)	151
$C2-H2B\cdots O9$	0.97	2.57	2.993 (4)	107
C3−H3 <i>B</i> ···O19	0.97	2.56	2.907 (3)	101
$C6-H6A\cdots O8$	0.97	2.40	2.863 (4)	109
$C12-H12\cdots O8^{ii}$	0.93	2.50	3.242 (3)	136
C15-H15···O9	0.93	2.46	2.845 (3)	105
C25-H25···O19	0.93	2.31	2.657 (4)	102
C31-H31···O19	0.93	2.40	2.764 (3)	103

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *XPRESS* (MacScience, 2002); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003) and *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors are grateful to DST/CSIR, New Delhi, for financial support under the projects SP/I2/FOO/93 and 01(1904)/03/EMR-II 2004. We also acknowledge the DST–FIST and UGC–SAP (phase I) for the instrument enabling the collection of CHNS and IR data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2179).

References

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Henderson, N. D., Plumb, J. A., Robins, D. J. & Workman, P. (1996). Anti-Cancer Drug. Des. 11, 421-438.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Li, W.-G., Zhang, X.-Y., Wu, Y.-J., Gao, M.-T. & Zheng, R.-L. (2006). J. Pharm. Pharmacol. 58, 941–949.
- MacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.
- Mao, C., Rakesh, V., Venkatachalam, T. K., Elise, A. S. & Fatih, M. U. (1998). Bioorg. Med. Chem. Lett. 8, 2213–2218.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Sugimoto, H., Tsuchiya, Y., Sugumi, H., Highurashi, K., Karibi, N., Iimura, Y., Sasaki, A., Kawakami, Y., Nakamura, T. & Araki, S. (1990). J. Med. Chem. 33, 1880–1881.

Acta Cryst. (2007). E63, o3669 [doi:10.1107/S1600536807037075]

[1-(4-Chloro-2-fluorophenylsulfonyl)piperidin-4-yl]diphenylmethanol

S. B. Benakaprasad, S. Naveen, M. A. Sridhar, J. Shashidhara Prasad and K. S. Rangappa

Comment

The piperidine scaffold and its analogues are important pharmacophores that can be found in biologically active compounds across a number of different therapeutic areas; these include antiacetylcholinesterase (Sugimoto *et al.*, 1990), anti-HIV (Mao *et al.*, 1998), anticancer (Henderson *et al.*, 1996), antimicrobial, anti-implantation, anti-inflammatory and antioxidative activities. The benzhydrol piperidine is a basic component of the antihistamine drug Terefenadine which is used for the treatment of various allergic disorders (Li *et al.*, 2006). The piperidine sulfonamides are regarded as the most promising compounds in terms of both receptor affinity and subtype selectivity. Moreover, the M1 and M3 receptor affinity are quite sensitive to different substitutuents on the nitrogen of the piperidine ring. As a part of our ongoing research on novel bioactive heterocycles, the title compound was synthesized by the condensation of [piperidin-4-yl]-diphenylmethanol with 4-chloro-2-fluorobenzenesulfonyl chloride, with dichloromethane as solvent and triethylamine as the base. Here we report its crystal structure.

A perspective view of the title compound is shown in Fig. 1. A study of torsion angles, asymmetry parameters and leastsquares plane calculations reveal that the piperidine ring is in a chair conformation. This has been confirmed by the puckering paramaters $q_2 = 0.0382 (27) \text{ Å}$, $q_3 = -0.5732 (26) \text{ Å}$, $Q_T = 0.5746 (26) \text{ Å}$, $\theta = 175.98 (27)^\circ$ and $\phi = 109 (4)^\circ$ (Cremer & Pople, 1975). The conformation of the attachment of the diphenylmethyl and the sulfonyl groups to the piperidine ring are best described by the torsion angle values of $-141.45 (19)^\circ$ and $179.39 (19)^\circ$ for S7—N1—C2—C3 and C18—C4—C5—C6, respectively; *i.e.* they adopt -antiperiplanar and +antiperiplanar conformations, respectively. The sulfonyl and diphenylmethanol groups are in equatorial positions.

The bond angles about the S atom shows significant deviation from that of a regular tetrahedron, with the largest deviations being observed for O8—S7—O9 [119.4 (1)°] and 09—S7—C10 [105.1 (1)°]. The widening of O8—S7—O9 is due to the repulsive interactions between the S=O bonds and the non-bonded interactions involving the two S=O bonds and the varied steric hindrance of the substituents. The structure thus has less steric interference. The bond angle N1—S7—C10 is comparable with the classic tetrahedral value of 109.47°. The sulfonyl O atoms, O8 and O9, are oriented in -synperiplanar and +synclinal conformations, respectively, as indicated by the torsion angle values of -21.5 (2)° and 49.9 (2)° for C6—N1—S7—O8 and C2—N1—S7—O9, respectively.

The dihedral angle between the least-squares plane, P1, defined by the atoms C2/C3/C5/C6 of the piperidine ring, and the benzene ring (C10–C15) is 49.80 (1)°. The dihedral angles between P1 and the phenyl rings (C20–C25) and (C26–C31) are 59.34 (1)° and 73.81 (1)°, respectively. The two phenyl rings make a dihedral angle of 65.13 (14)°.

The structure exhibits intermolecular hydrogen bonds of the type O—H…O and C—H…O. The molecules exhibit layered stacking and they form a one-dimensional polymeric chain (Figure 2).

Experimental

[Piperidin-4-yl]-diphenylmethanol (1.0 g, 3.74 mmol). was dissolved in dichloromethane (10 ml) and cooled to $0-5^{\circ}$ C in an ice bath. Triethylamine (1.136 g, 11.22 mmol) was then added to the cold reaction mixture and stirred for 10 minutes. 4-Chloro-2-fluorobenzenesulfonyl chloride (0.852 g, 3.74 mmol) was then added to the reaction mixture. The reaction mixture was stirred at room temperature for 5 h. The reaction mass was monitored by TLC. After completion of the reaction, the solvent was removed under reduced pressure and the residue was taken up in water and extracted with ethyl acetate. The organic layer was washed with water and dried over anhydrous sodium sulfate. A white crystalline solid was obtained which was kept in ethyl acetate: methanol (3:1) for three days. Pure light yellow crystals were obtained by slow evaporation of the solvent.

Refinement

H atoms were placed at idealized positions and allowed to ride on their parent atoms with C—H distances in the range 0.92–0.97 Å and O—H = 0.82 Å; $U_{iso}(H)$ values were set equal to $1.2U_{eq}(\text{carrier atom})$.

Figures

Fig. 1. The molecular structure, with atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.

Fig. 2. The crystal packing in the title compound, viewed down the *a* axis. Dashed lines indicate hydrogen bonds.

[1-(4-Chloro-2-fluorophenylsulfonyl)piperidin-4-yl]diphenylmethanol

Crystal data	
C ₂₄ H ₂₃ ClFNO ₃ S	$F_{000} = 960$
$M_r = 459.94$	$D_{\rm x} = 1.389 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 6513 reflections
a = 10.238 (7) Å	$\theta = 2.1 - 25.0^{\circ}$
<i>b</i> = 11.295 (4) Å	$\mu = 0.30 \text{ mm}^{-1}$
c = 21.072 (12) Å	T = 295 (2) K
$\beta = 115.481 \ (2)^{\circ}$	Block, pale yellow
$V = 2200 (2) \text{ Å}^3$	$0.25\times0.20\times0.20\ mm$

Z = 4

Data collection

MacScience DIPLabo 32001 diffractometer	3158 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.017$
Monochromator: graphite	$\theta_{\text{max}} = 25.0^{\circ}$
T = 295(2) K	$\theta_{\min} = 2.1^{\circ}$
ω scans	$h = -11 \rightarrow 11$
Absorption correction: none	$k = -12 \rightarrow 12$
6513 measured reflections	$l = -25 \rightarrow 24$
3597 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.047$	$w = 1/[\sigma^2(F_0^2) + (0.0933P)^2 + 0.6199P]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.152$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.14	$\Delta \rho_{max} = 0.56 \text{ e } \text{\AA}^{-3}$
3597 reflections	$\Delta \rho_{min} = -0.43 \text{ e} \text{ Å}^{-3}$
281 parameters	Extinction correction: SHELXL97 (Sheldrick, 1997), FC [*] =KFC[1+0.001XFC ² Λ^3 /SIN(2 Θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.037 (3)

Secondary atom site location: difference Fourier map

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F² for All reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit S are based on F², conventional *R*-factors *R* are based on F, with F set to zero for negative F². The observed criterion of F² > 2sigma(F²) is used only for calculating -R-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F² are statistically about twice as large as those based on F, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl16	-0.08080 (10)	1.05994 (7)	0.05424 (5)	0.0803 (4)
S7	-0.08950 (6)	0.53792 (5)	0.15198 (3)	0.0418 (2)
F17	0.10550 (18)	0.73512 (14)	0.23283 (7)	0.0712 (6)
O8	-0.1120 (2)	0.54723 (16)	0.21419 (9)	0.0548 (6)

09	-0.19477 (19)	0.47903 (16)	0.09182 (10)	0.0603 (6)
O19	0.27293 (18)	0.10628 (14)	0.20719 (9)	0.0479 (6)
N1	0.0630 (2)	0.47425 (17)	0.17395 (9)	0.0438 (6)
C2	0.1166 (3)	0.4518 (2)	0.12076 (12)	0.0489 (8)
C3	0.1912 (3)	0.3319 (2)	0.13428 (12)	0.0464 (8)
C4	0.3085 (2)	0.31985 (18)	0.20955 (11)	0.0361 (7)
C5	0.2446 (2)	0.3494 (2)	0.26104 (11)	0.0401 (7)
C6	0.1768 (3)	0.4716 (2)	0.24667 (11)	0.0430 (7)
C10	-0.0811 (2)	0.68354 (19)	0.12337 (11)	0.0388 (7)
C11	0.0136 (2)	0.7674 (2)	0.16736 (11)	0.0434 (7)
C12	0.0173 (3)	0.8821 (2)	0.14723 (13)	0.0495 (8)
C13	-0.0794 (3)	0.9146 (2)	0.08032 (13)	0.0509 (8)
C14	-0.1736 (3)	0.8345 (2)	0.03464 (14)	0.0641 (10)
C15	-0.1749 (3)	0.7192 (2)	0.05628 (13)	0.0568 (8)
C18	0.3811 (2)	0.19532 (18)	0.22271 (11)	0.0376 (7)
C20	0.4514 (2)	0.17185 (19)	0.17263 (11)	0.0400 (7)
C21	0.5273 (3)	0.2577 (2)	0.15578 (14)	0.0551 (9)
C22	0.5916 (3)	0.2331 (3)	0.11130 (15)	0.0708 (11)
C23	0.5801 (3)	0.1220 (3)	0.08268 (15)	0.0724 (13)
C24	0.5047 (4)	0.0364 (3)	0.09887 (14)	0.0672 (11)
C25	0.4409 (3)	0.0603 (2)	0.14300 (12)	0.0506 (8)
C26	0.4948 (2)	0.18438 (19)	0.29986 (11)	0.0383 (7)
C27	0.6161 (3)	0.2559 (2)	0.32666 (12)	0.0464 (8)
C28	0.7121 (3)	0.2531 (2)	0.39708 (14)	0.0565 (9)
C29	0.6895 (3)	0.1771 (3)	0.44252 (14)	0.0596 (9)
C30	0.5722 (3)	0.1037 (3)	0.41678 (15)	0.0648 (10)
C31	0.4752 (3)	0.1064 (2)	0.34611 (14)	0.0531 (9)
H2A	0.18440	0.51330	0.12280	0.0590*
H2B	0.03660	0.45280	0.07430	0.0590*
H3A	0.23440	0.32080	0.10180	0.0560*
H3B	0.11960	0.27010	0.12540	0.0560*
H4	0.38350	0.37880	0.21600	0.0430*
H5A	0.17180	0.29100	0.25680	0.0480*
H5B	0 32020	0.34620	0.30870	0.0480*
H6A	0.13540	0.48870	0.27930	0.0520*
H6B	0 24970	0 53090	0 25270	0.0520*
H12	0.08280	0.93630	0.17760	0.0590*
H14	-0.23640	0.85760	-0.01070	0.0770*
H15	-0.23940	0.66500	0.02540	0.0680*
H19	0.23170	0.11500	0.23270	0.0720*
H21	0.53540	0 33320	0 17460	0.0660*
H22	0.64270	0.29200	0 10080	0.0850*
H23	0.62300	0.10520	0.05270	0.0870*
H24	0.49660	-0.03890	0.07970	0.0800*
H25	0.38990	0.00090	0.15320	0.0610*
H27	0.63370	0 30720	0.29660	0.0560*
H28	0.79230	0.30280	0.41380	0.0680*
H29	0.75320	0.17590	0.49000	0.0720*
H30	0 55710	0.05110	0 44690	0.0780*
	0.00,10	0.00110	0070	0.0700

H31	0.39620	0.05550	0.32960	0	0.0640*	
Atomic displace	ement parameters	(\AA^2)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C116	0.0941 (7)	0.0507 (5)	0.1008 (7)	0.0099 (4)	0.0463 (5)	0.0212 (4)
S7	0.0346 (4)	0.0436 (4)	0.0460 (4)	0.0033 (2)	0.0161 (3)	0.0028 (2)
F17	0.0733 (11)	0.0630 (10)	0.0444 (8)	-0.0008 (8)	-0.0059 (7)	-0.0002 (7)
08	0.0504 (11)	0.0641 (11)	0.0610(11)	0.0160 (8)	0.0345 (9)	0.0157 (8)
09	0.0451 (10)	0.0527 (11)	0.0667 (12)	-0.0078 (8)	0.0084 (9)	-0.0041 (8)
O19	0.0460 (10)	0.0397 (9)	0.0607 (10)	-0.0104 (7)	0.0255 (8)	-0.0049 (7)
N1	0.0410 (11)	0.0519 (11)	0.0390 (10)	0.0128 (8)	0.0178 (8)	0.0027 (8)
C2	0.0546 (15)	0.0546 (14)	0.0417 (12)	0.0149 (11)	0.0246 (11)	0.0083 (10)
C3	0.0519 (15)	0.0503 (13)	0.0394 (12)	0.0105 (10)	0.0220 (10)	-0.0002 (9)
C4	0.0339 (12)	0.0356 (11)	0.0414 (11)	0.0018 (8)	0.0188 (9)	0.0001 (8)
C5	0.0386 (12)	0.0452 (12)	0.0381 (11)	0.0057 (9)	0.0181 (9)	0.0021 (9)
C6	0.0401 (13)	0.0468 (13)	0.0406 (12)	0.0076 (9)	0.0158 (10)	-0.0017 (9)
C10	0.0351 (12)	0.0424 (12)	0.0383 (11)	0.0044 (9)	0.0152 (9)	-0.0014 (9)
C11	0.0395 (13)	0.0500 (13)	0.0354 (11)	0.0060 (10)	0.0110 (9)	-0.0019 (9)
C12	0.0490 (15)	0.0433 (13)	0.0549 (14)	0.0004 (10)	0.0212 (11)	-0.0081 (10)
C13	0.0549 (16)	0.0459 (13)	0.0564 (14)	0.0093 (11)	0.0282 (12)	0.0063 (11)
C14	0.0705 (19)	0.0584 (17)	0.0466 (14)	0.0072 (13)	0.0094 (13)	0.0135 (12)
C15	0.0583 (16)	0.0513 (14)	0.0421 (13)	0.0004 (12)	0.0040 (11)	0.0007 (10)
C18	0.0350 (12)	0.0326 (11)	0.0474 (12)	-0.0032 (8)	0.0198 (10)	-0.0009 (8)
C20	0.0362 (12)	0.0434 (12)	0.0396 (11)	0.0064 (9)	0.0155 (9)	-0.0006 (9)
C21	0.0556 (16)	0.0598 (16)	0.0615 (16)	-0.0057 (12)	0.0361 (13)	-0.0075 (12)
C22	0.0570 (18)	0.105 (2)	0.0639 (17)	-0.0040 (16)	0.0389 (15)	-0.0023 (16)
C23	0.0595 (19)	0.113 (3)	0.0496 (15)	0.0229 (18)	0.0282 (14)	-0.0076 (16)
C24	0.073 (2)	0.076 (2)	0.0435 (14)	0.0273 (16)	0.0164 (13)	-0.0116 (12)
C25	0.0562 (15)	0.0463 (13)	0.0414 (12)	0.0124 (11)	0.0136 (11)	-0.0015 (9)
C26	0.0393 (13)	0.0343 (11)	0.0457 (12)	0.0060 (8)	0.0224 (10)	0.0015 (8)
C27	0.0477 (14)	0.0468 (13)	0.0477 (13)	-0.0047 (10)	0.0235 (11)	-0.0012 (10)
C28	0.0514 (15)	0.0620 (16)	0.0534 (15)	-0.0054 (12)	0.0201 (12)	-0.0068 (12)
C29	0.0582 (17)	0.0714 (18)	0.0469 (14)	0.0126 (13)	0.0204 (12)	0.0056 (12)
C30	0.0659 (19)	0.0725 (19)	0.0601 (16)	0.0094 (15)	0.0310 (14)	0.0219 (14)
C31	0.0479 (15)	0.0530 (15)	0.0604 (15)	0.0010 (11)	0.0252 (12)	0.0129 (11)

Geometric parameters (Å, °)

Cl16—C13	1.729 (2)	C26—C31	1.391 (3)
S7—O8	1.429 (2)	C26—C27	1.382 (4)
S7—O9	1.427 (2)	C27—C28	1.383 (4)
S7—N1	1.596 (2)	C28—C29	1.378 (4)
S7—C10	1.767 (2)	C29—C30	1.365 (5)
F17—C11	1.343 (3)	C30—C31	1.390 (4)
O19—C18	1.426 (3)	C2—H2A	0.9698
O19—H19	0.8198	C2—H2B	0.9693
N1—C2	1.467 (3)	С3—НЗА	0.9696
N1—C6	1.473 (3)	С3—Н3В	0.9704

C2—C3	1.520 (3)	C4—H4	0.9806
C3—C4	1.529 (3)	С5—Н5А	0.9702
C4—C5	1.526 (3)	C5—H5B	0.9696
C4—C18	1.559 (3)	С6—Н6А	0.9698
C5—C6	1.516 (3)	С6—Н6В	0.9696
C10—C11	1.387 (3)	C12—H12	0.9299
C10—C15	1.384 (3)	C14—H14	0.9304
C11—C12	1.369 (3)	C15—H15	0.9298
C12—C13	1.379 (4)	C21—H21	0.9290
C13—C14	1.370 (4)	C22—H22	0.9300
C14—C15	1.382 (3)	C23—H23	0.9310
C18—C26	1.544 (3)	C24—H24	0.9298
C18—C20	1.535 (3)	C25—H25	0.9303
C20—C21	1.381 (4)	C27—H27	0.9315
C20—C25	1.390 (3)	C28—H28	0.9298
$C_{21} - C_{22}$	1.360 (4)	C29—H29	0.9301
C22—C23	1.373(3) 1.360(5)	C30—H30	0.9296
$C_{23} = C_{24}$	1.309(5)	C31—n31	0.9293
	1.574(5)		0.0750
Cl16···Cl16 ⁴	3.6125 (15)	С31Н5В	3.0659
С116…Н3В"	3.0/34		2.6094
Cl16…H23 ^m	3.0617	Н2А…Н6В	2.5307
Cl16H28 ^{1V}	3.0889	$H2A\cdots C28^{x}$	3.0027
F17…O8	2.977 (3)	$H2A\cdots C29^{x}$	2.9177
F17…N1	3.154 (2)	H2B…O9	2.5666
F17…C6	3.049 (3)	H3A…C20	2.6722
F17…H6B	2.6728	H3A…C21	2.8034
O8…F17	2.977 (3)	H3B····Cl16 ^{ix}	3.0734
O8…O19 ^v	2.873 (3)	H3B…O19	2.5555
O8···C12 ^{vi}	3.242 (3)	НЗВ…Н5А	2.5951
O9···C29 ^{vii}	3.347 (3)	H4…C21	2.6937
O19…O8 ^{vi}	2.873 (3)	H4…C27	2.8736
08…H6A	2.3968	Н4…Н6В	2.5174
08…H31 ^v	2.6488	H4…H21	2.1476
O8…H12 ^{vi}	2.5044	H4…H27	2.5213
O8…H19 ^v	2.1261	H5A…O19	2.7293
O9…H22 ^{viii}	2.7456	Н5А…Н3В	2.5951
O9…H2B	2.5666	H5A…H19	2.2031
O9…H15	2.4555	H5A…C11 ^{vi}	2.9729
O9…H29 ^{vii}	2.6393	Н5В…С26	2.6186
O19…H3B	2.5555	H5B…C27	3.0618
019…Н5А	2.7293	H5B…C31	3.0659
O19…H25	2.3059	H5B···C24 ^x	2.9357
О19…Н31	2.4030	Н6А…О8	2.3968
019…H12 ^{ix}	2.6114	H6A····C12 ^{vi}	2.8936

N1…F17	3.154 (2)	H6B…F17	2.6728
C3…C21	3.377 (5)	H6B…H2A	2.5307
C5…C31	3.561 (3)	H6B…H4	2.5174
C6…F17	3.049 (3)	H6B···C24 ^x	3.0565
$C6$ ··· $C24^{x}$	3.554 (4)	H6B…C25 ^x	2.9974
C12···O8 ^v	3.242 (3)	H12…O19 ⁱⁱ	2.6114
C12…C28 ^x	3.591 (4)	H12…H19 ⁱⁱ	2.4946
C21…C3	3.377 (5)	H12…O8 ^v	2.5044
C21···C27	3.313 (4)	H14···C24 ^{xiii}	2.8354
C24···C6 ^{xi}	3.554 (4)	H14····C25 ^{xiii}	2.8272
C25····C27 ^{xi}	3.590 (3)	H15…O9	2.4555
C27…C21	3.313 (4)	H19…C5	2.7048
$C27$ ··· $C25^{x}$	3.590 (3)	H19…C31	2.6094
C28…C12 ^{xi}	3.591 (4)	H19…H5A	2.2031
C29····O9 ^{xii}	3.347 (3)	H19…H12 ^{ix}	2.4946
C31…C5	3.561 (3)	H19…H31	2.1210
C4…H27	3.0357	H19…O8 ^{vi}	2.1261
C4…H21	2.7264	H21…C4	2.7264
C5…H19	2.7048	H21…C27	3.0715
C11···H5A ^v	2.9729	H21…H4	2.1476
C12…H28 ^x	2.9005	H21…H27	2.3413
C12···H6A ^v	2.8936	H22····O9 ^{xiv}	2.7456
С20…Н27	2.9068	H23…Cl16 ^{xv}	3.0617
С20…НЗА	2.6722	H25…O19	2.3059
С21…Н4	2.6937	H25···C27 ^{xi}	2.8043
С21…НЗА	2.8034	H25····C28 ^{xi}	3.0158
C21…H27	2.7428	H25···H27 ^{xi}	2.4867
C24···H6B ^{xi}	3.0565	H27…C4	3.0357
C24···H5B ^{xi}	2.9357	H27…C20	2.9068
C24…H14 ^{xiii}	2.8354	H27…C21	2.7428
C25···H14 ^{xiii}	2.8272	H27…H4	2.5213
C25···H6B ^{xi}	2.9974	H27…H21	2.3413
С26…Н5В	2.6186	H27…H25 ^x	2.4867
С27…Н4	2.8736	H28····C12 ^{xi}	2.9005
С27…Н5В	3.0618	H28····Cl16 ^{xvi}	3.0889
C27…H21	3.0715	H29…O9 ^{xii}	2.6393
$C27 \cdots H25^{x}$	2.8043	H31…O19	2.4030
C28···H2A ^{xi}	3.0027	H31…H19	2.1210
C28…H25 ^x	3.0158	H31…O8 ^{vi}	2.6488
C29···H2A ^{xi}	2.9177		
O8—S7—O9	119.41 (12)	C26—C31—C30	120.8 (3)
O8—S7—N1	106.90 (11)	N1—C2—H2A	109.77

O8—S7—C10	107.17 (11)	N1—C2—H2B	109.78
O9—S7—N1	108.57 (11)	С3—С2—Н2А	109.72
O9—S7—C10	105.07 (11)	С3—С2—Н2В	109.74
N1—S7—C10	109.47 (11)	H2A—C2—H2B	108.31
С18—О19—Н19	109.45	С2—С3—НЗА	109.14
S7—N1—C6	123.24 (17)	С2—С3—Н3В	109.13
C2—N1—C6	113.8 (2)	С4—С3—Н3А	109.12
S7—N1—C2	119.82 (15)	С4—С3—Н3В	109.09
N1—C2—C3	109.50 (19)	НЗА—СЗ—НЗВ	107.88
C2—C3—C4	112.38 (18)	C3—C4—H4	107.58
C3—C4—C5	109.4 (2)	С5—С4—Н4	107.62
C5—C4—C18	112.85 (17)	C18—C4—H4	107.64
C3—C4—C18	111.50 (17)	C4—C5—H5A	109.47
C4—C5—C6	110.90 (18)	С4—С5—Н5В	109.45
N1—C6—C5	108.39 (18)	С6—С5—Н5А	109.45
S7—C10—C15	120.36 (17)	С6—С5—Н5В	109.50
C11—C10—C15	117.5 (2)	H5A—C5—H5B	108.02
S7—C10—C11	122.04 (16)	N1—C6—H6A	110.01
F17—C11—C12	118.3 (2)	N1—C6—H6B	110.00
C10-C11-C12	123.0 (2)	С5—С6—Н6А	110.00
F17—C11—C10	118.7 (2)	С5—С6—Н6В	110.02
C11—C12—C13	117.7 (2)	H6A—C6—H6B	108.43
Cl16—C13—C12	118.80 (19)	C11—C12—H12	121.18
Cl16—C13—C14	119.8 (2)	C13—C12—H12	121.09
C12—C13—C14	121.4 (2)	C13—C14—H14	120.19
C13—C14—C15	119.6 (2)	C15—C14—H14	120.18
C10-C15-C14	120.7 (2)	C10—C15—H15	119.68
O19—C18—C20	105.56 (17)	C14—C15—H15	119.63
O19—C18—C26	110.14 (17)	C20-C21-H21	119.44
C4—C18—C20	111.24 (17)	C22—C21—H21	119.45
C4—C18—C26	110.19 (17)	C21—C22—H22	119.81
C20—C18—C26	110.24 (18)	С23—С22—Н22	119.95
O19—C18—C4	109.37 (18)	С22—С23—Н23	120.48
C18—C20—C21	122.5 (2)	С24—С23—Н23	120.43
C21—C20—C25	117.7 (2)	C23—C24—H24	119.49
C18—C20—C25	119.8 (2)	C25—C24—H24	119.63
C20—C21—C22	121.1 (2)	C20—C25—H25	119.52
C21—C22—C23	120.2 (3)	C24—C25—H25	119.49
C22—C23—C24	119.1 (3)	С26—С27—Н27	119.24
C23—C24—C25	120.9 (3)	С28—С27—Н27	119.18
C20—C25—C24	121.0 (3)	C27—C28—H28	119.78
C18—C26—C27	121.41 (19)	C29—C28—H28	119.86
C27—C26—C31	117.3 (2)	С28—С29—Н29	120.47
C18—C26—C31	121.2 (2)	С30—С29—Н29	120.56
C26—C27—C28	121.6 (2)	С29—С30—Н30	119.55
C27—C28—C29	120.4 (3)	C31—C30—H30	119.57
C28—C29—C30	119.0 (3)	C26—C31—H31	119.62
C29—C30—C31	120.9 (3)	C30—C31—H31	119.54
08—S7—N1—C2	179.94 (17)	C10-C11-C12-C13	0.8 (4)

O9—S7—N1—C2	49.9 (2)	C11—C12—C13—C14	-1.7 (5)
C10—S7—N1—C2	-64.3 (2)	C11—C12—C13—C116	178.2 (2)
O8—S7—N1—C6	-21.5 (2)	Cl16—C13—C14—C15	-178.3 (2)
O9—S7—N1—C6	-151.58 (19)	C12—C13—C14—C15	1.7 (5)
C10—S7—N1—C6	94.2 (2)	C13-C14-C15-C10	-0.6 (5)
N1—S7—C10—C11	-61.7 (2)	C4-C18-C26-C31	113.2 (2)
O8—S7—C10—C11	53.8 (2)	C26—C18—C20—C25	97.5 (2)
O9—S7—C10—C11	-178.2 (2)	O19—C18—C26—C27	175.9 (2)
N1—S7—C10—C15	121.2 (2)	O19—C18—C26—C31	-7.6 (3)
O8—S7—C10—C15	-123.2 (2)	C4—C18—C26—C27	-63.4 (3)
O9—S7—C10—C15	4.8 (2)	O19—C18—C20—C21	159.2 (2)
S7—N1—C2—C3	-141.45 (19)	C20-C18-C26-C27	59.8 (3)
S7—N1—C6—C5	139.33 (19)	C20-C18-C26-C31	-123.7 (2)
C2—N1—C6—C5	-61.0 (3)	C4—C18—C20—C21	40.7 (3)
C6—N1—C2—C3	58.1 (3)	C26—C18—C20—C21	-81.9 (3)
N1—C2—C3—C4	-53.4 (3)	C4—C18—C20—C25	-140.0 (2)
C2—C3—C4—C5	53.2 (3)	O19—C18—C20—C25	-21.4 (3)
C2—C3—C4—C18	178.7 (2)	C21—C20—C25—C24	0.4 (4)
C3—C4—C18—C20	59.6 (2)	C25—C20—C21—C22	-0.5 (4)
C3—C4—C18—C26	-177.9 (2)	C18—C20—C25—C24	-179.0 (2)
C5-C4-C18-O19	67.0 (2)	C18—C20—C21—C22	178.9 (2)
C5-C4-C18-C20	-176.80 (18)	C20—C21—C22—C23	0.3 (4)
C5-C4-C18-C26	-54.2 (2)	C21—C22—C23—C24	-0.1 (5)
C18—C4—C5—C6	179.39 (19)	C22—C23—C24—C25	0.1 (5)
C3—C4—C18—O19	-56.6 (2)	C23—C24—C25—C20	-0.2 (5)
C3—C4—C5—C6	-55.8 (2)	C27—C26—C31—C30	1.8 (4)
C4—C5—C6—N1	58.8 (3)	C18—C26—C27—C28	174.7 (2)
S7-C10-C15-C14	176.9 (2)	C18—C26—C31—C30	-174.9 (3)
C11-C10-C15-C14	-0.3 (4)	C31—C26—C27—C28	-2.0 (4)
C15-C10-C11-C12	0.2 (4)	C26—C27—C28—C29	0.7 (4)
C15-C10-C11-F17	179.8 (2)	C27—C28—C29—C30	0.9 (5)
S7—C10—C11—C12	-177.0 (2)	C28—C29—C30—C31	-1.1 (5)
S7—C10—C11—F17	2.7 (3)	C29—C30—C31—C26	-0.3 (5)
F17—C11—C12—C13	-178.8 (3)		

Symmetry codes: (i) -x, -y+2, -z; (ii) x, y+1, z; (iii) x-1, y+1, z; (iv) x-1, -y+3/2, z-1/2; (v) -x, y+1/2, -z+1/2; (vi) -x, y-1/2, -z+1/2; (vii) x-1, -y+1/2, z-1/2; (viii) x-1, y, z; (ix) x, y-1, z; (ix) x, y-1, z; (ix) x, y-1/2, -z+1/2; (ii) x+1, -y+1/2, -z+1/2; (iii) x+1, -y+1/2, z+1/2; (iii) -x, -y+1, -z; (iv) x+1, y, z; (iv) x+1, y-1, z; (iv) x+1, -y+1/2, z+1/2; (iii) -x, -y+1, -z; (iv) x+1, y, z; (iv) x+1, -y+3/2, z+1/2.

<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
0.82	2.13	2.873 (3)	151
0.97	2.57	2.993 (4)	107
0.97	2.56	2.907 (3)	101
0.97	2.40	2.863 (4)	109
0.93	2.50	3.242 (3)	136
0.93	2.46	2.845 (3)	105
0.93	2.31	2.657 (4)	102
0.93	2.40	2.764 (3)	103
	<i>D</i> —H 0.82 0.97 0.97 0.97 0.93 0.93 0.93 0.93	D—HH…A0.822.130.972.570.972.560.972.400.932.500.932.310.932.40	D—HH···A D ···A0.822.132.873 (3)0.972.572.993 (4)0.972.562.907 (3)0.972.402.863 (4)0.932.503.242 (3)0.932.462.845 (3)0.932.312.657 (4)0.932.402.764 (3)

Symmetry codes: (vi) -x, y-1/2, -z+1/2; (v) -x, y+1/2, -z+1/2.

